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such approximations to the specific volume and specific enthalpy as ftunctions of 
pressure and temperature are included in the collection. 

A. H. T. 

531P, X, ZJ.-WVARD C. SANGREN, Digital Computers and Nuclear Reactor Calcula- 
tions, John NViley & Sons, New York, 1960, xi + 208 p., 24 cm. Price $8.50. 

As the author states in his preface, the primary objective of this book is to pre- 
sent to nuclear engineers and scientists an introduction to high speed reactor calcu- 
lations. Since the appearance of the basic reference, The Elements of Nuclear Reactor 
Theory bv Glasstone and Edlund, Van Nostrand, 1952, the entire complexion of 
actual reactor design calculations has changed as a result of the growth in speed and 
size of computing machines, and reactor design calculations represent today a sig- 
nificant part of scientific computing time on modern computers. 

The outline of the book by chapters is 
Chapter 1. Introduction 
Chapter 2. Digital Computers 
Chapter 3. Programming 
Chapter 4. Numerical Analysis 
Chapter 5. A Code for Fission-Product Poisoning 
Chapter 6. Diffusion and Age-Diffusion Calculations 
Chapter 7. Transport Equation-Monte Carlo 
Chapter 8. Additional Reactor Calculations 

In Chapter 1, the author reviews the tremendous parallel growth of high speed 
computing machines and nuclear reactors, and their present interplay. In Chapter 
2, an introduction and description of present day computers is given. In Chapter 3, 
programming for computers is introduced. After some preliminary remarks (no 
proofs) about interpolation, numerical integration, matrices, etc., items which can 
be found in many well-known texts on elementary numerical analysis, the author 
treats in Chapter 4 the more relevant problem of the numerical approximation of 
partial differential equations by difference equations, and their solution by means 
of iterative methods. Also, the treatment of interface conditions, which arise 
naturally in heterogeneous reactors, is given. 

In Chapter 5, a simple code for fission-product poisoning is followed from the 
physical and mathematical definitions through to the construction of a program in 
the Bell (Wolontis) system. 

In Chapter 6, the longest chapter, the author describes diffusion calculations, 
extending from steady-state criticality problems for reactors to the solution of two- 
and three-dimensional multigroup diffusion equations. In Chapter 7, the Sn method 
of Carlson is described, along with the use of Monte Carlo methods for solving prob- 
lems such as those encountered in shielding calculations. 

In his primary aim, the author does succeed. Nevertheless, the reviewer, being 
quite familiar with this area, was most critical with respect to the age of the refer- 
ences, as most of the technical papers referred to had appeared prior to 1957. As 
no serious attempt was made to fill the gap between these earlier developments and 
the developments which have taken place in the reactor field in the last few years, 
many statements in the book are either somewhat obsolete or misleading. For 
example, the numerical inversion of tridiagonal matrix equations on page 74 by an 
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algorithm is not stated to be simply Gauss etimination applied to the matrix prob- 
lem, and in fact the author states that this "method" has not appeared in textbooks 
as yet. The iterative methods of Young-Frankel, and Peaceman-Rachford are each 
discussed twice, (p. 84 and p. 144) and not one of the four definitions is completely 
accurate. The book is, however, the only existing bridge between The Elements of 
Nuclear Reactor Theory and present computational technique in the reactor field. 

R. S. V. 

54[S, W].-RONALD A. HOWARD, Dynamic Programming and Markov Processes, 
Technology Press & Wiley, New York, viii + 136 p., 23 cm. Price $5.75. 

Consider a physical system S represented at any time t by a state vector x(t). 
The classical description of the unfolding of the system over time uses an equation 
of the form x(t) = F(x(s), s $ t), where F is a prescribed operation upon the 
function x(s) for s ? t. In certain simple cases, this reduces to the usual vector 
differential equation dx/dt = g(x), x(O) = c. 

For a variety of reasons, it is sometimes preferable to renounce a deterministic 
description and to introduce stochastic variables. If we take x(t) to be a vector 
whose i-th component is now the probability that the system is in state i at time t, 
and allow only discrete values of time, wve can in many cases describe the behavior 
of the system over time quite simply by means of the equation x(t + 1) = Ax(t). 
Here A = (aij), i, j = 1, 2, * * *, 1V, is a transition matrix whose element aii is the 
probability that a system in state j at time t will be found in state i at time t + 1. 
Processes of this type are called Markov processes and are fundamental in modem 
mathematical physics. 

So far we have assumed that the ob.server plays no role in the process. Let us 
now assume that in some fashion or other the observer has the power to choose the 
transition matrix A at each stage of the process. We call a process of this type a 
Mllarkovian decision process. It is a special, and quite important, type of dynamic 
programming process; cf. Chapter XI of R. Bellman, Dynamic Programming, 
Princeton University Press, 1957. 

Let us suppose that at any stage of the process, we have a choice of one of a 
set of matrices, A (q) = (aii(q)). Associated with each choice of q and initial state i 
is an expected single-stage return bi(q). We wish to determine a sequence of choices 
which will maximize the expected return from n stages of the process. Denoting 
the maximum expected return from an n-stage process by fi(n), the principle of 
optimality yields the functional equation 

fi(n) = max [bi(q) + < aij(q)fj(n - 1)]. 
q j=1 

In this form, the determination of optimal policies and the maximum returns 
is easily accomplished by means of digital computers; see, for example S. Dreyfus, 
J. Oper. Soc. of Great Britain, 1958. Problems leading to similar equations, resolved 
in similar fashion, arise in the study of equipment replacement and in continuous 
form in the "optimal inventory" problem; see Chapter Five of the book mentioned 
above and K. D. Arrow, S. Karlin, and H. Scarf, Studies in the Mllathematical Theory 
of Inventory and Production, Stanford University Press, 1959. 


